Guidelines and HOWTOs/Debugging/Debugging symbols: Difference between revisions
*>Tstaerk |
*>Tstaerk No edit summary |
||
Line 99: | Line 99: | ||
697 | 697 | ||
This gives us hope that there will be no major speed difference between a debug- and a release-version of a binary. | This gives us hope that there will be no major speed difference between a debug- and a release-version of a binary. | ||
= Speed implications = | = Speed implications = | ||
Line 123: | Line 116: | ||
sys 0m1.328s | sys 0m1.328s | ||
Also lasts 6 seconds. So the main difference is in the binaries size. | Also lasts 6 seconds. So the main difference is in the binaries size. | ||
= And make? = | |||
How does cmake propagate to make if a debug version is wanted? Do a | |||
cmake . -DCMAKE_BUILD_TYPE=debugfull && make VERBOSE=1 | |||
You will find a difference during the link step. The parameters | |||
-DNDEBUG -DQT_NO_DEBUG | |||
are unique for the release-version. There are further differences like the O2 optimization. |
Revision as of 12:09, 12 July 2009
Overview
Debugging symbols allow you to debug your application better. They are added to your binary by the compiler. For KDE, you have to decide during the cmake step if you want debugging symbols or not. To compile your application with debugging symbols, use
cmake . -DCMAKE_BUILD_TYPE=debugfull
to compile it without debugging symbols, use
cmake . -DCMAKE_BUILD_TYPE=release
Depending on your decision, output generated with the command kDebug will also be (debugfull) or not be (release) added to your application.
Example app
As an example, let's write an application that crashes:
main.cpp
#include <KApplication> #include <KAboutData> #include <KCmdLineArgs> #include <KMessageBox> #include <iostream> using namespace std; int main (int argc, char *argv[]) { KAboutData aboutData( "tutorial1", 0, ki18n("Tutorial 1"), "1.0", ki18n("Displays a KMessageBox popup"), KAboutData::License_GPL, ki18n("(c) 2009"), ki18n("Some text..."), "http://tutorial.com/", "[email protected]"); KCmdLineArgs::init( argc, argv, &aboutData ); KApplication app; KMessageBox::questionYesNo( 0, i18n( "Hello World" ) ); int* i; cout << "i is at " << i << " value " << *i << endl; i=(int*)0x0; cout << "i is at " << i << " value " << *i << endl; return 0; }
CMakeLists.txt
project (tutorial1) find_package(KDE4 REQUIRED) include (KDE4Defaults) include_directories(${KDE4_INCLUDES}) set(tutorial1_SRCS main.cpp) kde4_add_executable(tutorial1 ${tutorial1_SRCS}) target_link_libraries(tutorial1 ${KDE4_KDEUI_LIBS}) install(TARGETS tutorial1 ${INSTALL_TARGETS_DEFAULT_ARGS})
Now let's compile this without debugging symbols:
cmake . -DCMAKE_BUILD_TYPE=release && make -j4
We see that the resulting file is small:
# ll tutorial1 -rwxr-xr-x 1 root root 18879 Jul 11 18:07 tutorial1
With debugging symbols, the file is bigger:
cmake . -DCMAKE_BUILD_TYPE=debugfull && make # ll tutorial1 -rwxr-xr-x 1 root root 256622 Jul 11 18:09 tutorial1
Backtraces
Now let's start the application and look at the backtrace:
cmake . -DCMAKE_BUILD_TYPE=release && make -j4
Gives you the backtrace
Application: Tutorial 1 (tutorial1), signal SIGSEGV �[?1034h[Thread debugging using libthread_db enabled] 0x00007f58abba4cb0 in nanosleep () from /lib64/libc.so.6 [Current thread is 1 (Thread 0x7f58b0cfd750 (LWP 21264))]
Thread 1 (Thread 0x7f58b0cfd750 (LWP 21264)): [KCrash Handler] #5 0x00000000004016aa in main ()
The debugging build
cmake . -DCMAKE_BUILD_TYPE=debugfull && make -j4
Gives you the backtrace
Application: Tutorial 1 (tutorial1), signal SIGSEGV �[?1034h[Thread debugging using libthread_db enabled] 0x00007fd0b8161cb0 in nanosleep () from /lib64/libc.so.6 [Current thread is 1 (Thread 0x7fd0bd2ba750 (LWP 21327))]
Thread 1 (Thread 0x7fd0bd2ba750 (LWP 21327)): [KCrash Handler] #5 0x0000000000401625 in main (argc=1, argv=0x7fffc52f5138) at /root/kdehello/main.cpp:25
So you see: with debugging symbols, you see the line number where the crash occurred. Without, you do not see this.
Where are they?
Where are the debugging symbols stored? Use objdump -g to find out:
# objdump -g tutorial1-release | wc -l 511 # objdump -g tutorial1-debugfull | wc -l 40943
It is important to know that the code lines (in assembler) to be executed actually do not differ a lot. We see this when disassembling the code:
# objdump -d tutorial1-debugfull | wc -l 658 # objdump -d tutorial1-release | wc -l 697
This gives us hope that there will be no major speed difference between a debug- and a release-version of a binary.
Speed implications
We remove the lines that cause the crash and the messagebox. Then we execute the program 100 times:
cmake . -DCMAKE_BUILD_TYPE=debugfull && make -j4 time for i in $(seq 1 1 100); do ./tutorial1; done
real 0m6.201s user 0m4.368s sys 0m1.320s
Lasts 6 seconds. Now with the release version:
cmake . -DCMAKE_BUILD_TYPE=release && make -j4 time for i in $(seq 1 1 100); do ./tutorial1; done
real 0m6.259s user 0m4.368s sys 0m1.328s
Also lasts 6 seconds. So the main difference is in the binaries size.
And make?
How does cmake propagate to make if a debug version is wanted? Do a
cmake . -DCMAKE_BUILD_TYPE=debugfull && make VERBOSE=1
You will find a difference during the link step. The parameters
-DNDEBUG -DQT_NO_DEBUG
are unique for the release-version. There are further differences like the O2 optimization.