
KDE Development

Frameworks 5
For C++/Qt developers

ii

KDE Frameworks Cookbook

The KDE Developers

July 12, 2022

ii

Contents

1 Frameworks 5 1
1.1 History . 2

2 Concurrent programming using ThreadWeaver 5
2.1 HelW olorld! . 5
2.2 Adding ThreadWeaver to a project - an introduction to the Frame-

works 5 build system . 7
2.3 Hello World! with queueing multiple jobs 8
2.4 Doing things in a Sequence . 11
2.5 Working title: Everything in moderation (and decorated) 16

3 KArchive 17
3.1 Show me the code . 17
3.2 Advanced usecases . 18

3.2.1 Sending compressed data over networks 18

4 KItemModels 19
4.1 Abstract . 19
4.2 KBreadcrumbSelectionModel . 19
4.3 KCheckableProxyModel . 19
4.4 KDescendantsProxyModel . 19
4.5 KLinkItemSelectionModel . 20
4.6 KModelIndexProxyMapper . 20
4.7 KRecursiveFilterProxyModel . 20
4.8 KSelectionProxyModel . 20

iii

iv CONTENTS

5 Spellchecking made easy 21

5.1 Spellchecking in your QTextEdit 21

5.2 Language Detection in Sonnet . 22

5.3 GUI Widgets provided by Sonnet 22

6 Reaching a wider audience 25

6.1 Writing Messages . 25

6.1.1 General Messages . 25

6.1.2 Specialized Messages . 27

6.1.3 Placeholder Substitution 29

7 Creating a new application 31

7.1 Starting a new application from a template 31

7.2 Walking through the skeleton . 34

7.2.1 main.cpp . 34

7.2.2 BrightFuture . 35

7.3 Plotting the future . 36

7.4 Configuring the color . 38

7.4.1 Enabling KConfig . 38

7.4.2 Adding the capability to plot in different colors 39

7.4.3 Writing the configuration 40

7.4.4 Reading the configuration 41

8 Detect and Handle System Idling 43

8.1 Using It . 43

Chapter 1

Frameworks 5

KDE Frameworks 5 are a set of cross platform solutions that extend the func-
tionality Qt offers. They are designed as drop-in Qt Addon libraries, enrich
Qt as a development environment with functions that simplify, accelerate and
reduce the cost of Qt development. Frameworks eliminate the need to reinvent
key functionalities.

All frameworks come with quality promises, are developed in an open and
welcoming environment, and are licensed under the Lesser Gnu Public License.
By having each framework tailored to a specific use case, a framework can bring
you the feature you need with a minimum of additional libraries.

Frameworks 5 consists of functional components and are structured in ‘tiers’
and ‘categories’. The tiers give a structure for link-time dependencies. Tier 1
Frameworks can be used independently, while Tier 3 Frameworks can depend on
other Tier 3 Frameworks and tiers below them. The catagories give information
about the run-time dependencies, and are divided into the following three
catagories:

• Functional frameworks have no runtime dependencies. For example,
KArchive handles compression and decompression for many archive formats
transparently and can be used as a drop-in library.

• Integration designates code that requires runtime dependencies for in-
tegration depending on what the OS or platform offers. For example,
Solid supplies information on available hardware features and may require
runtime components to deliver some of the data on some platforms.

• Solutions have mandatory runtime dependencies. For example, KIO
(KDE Input/Output) offers a network-transparent virtual filesystem that
lets users browse and edit files as if they were local, no matter where they
are physically stored. And KIO requires kioslave daemons to function.

1

2 CHAPTER 1. FRAMEWORKS 5

Figure 1.1: Frameworks 5 separates the KDE libraries into modules with clear
dependencies.

The Frameworks are also separated by respecting core/gui distinctions and the
different GUI technologies. So it is not uncommon to find a core, a gui and a
widget module relating to a given Framework (e.g KConfigCore vs KConfigGui).
This way third parties can use only the parts they need and avoid pulling
unwanted dependencies on QtGui.

1.1 History

For over 15 years, the KDE libraries formed the common code base for (almost)
all KDE applications. They provided a high-level functionality such as toolbars
and menus, spell checking and file access. In that time ‘kdelibs’ was released
and distributed as a single set of interconnected libraries. Through the KDE
Frameworks efforts, these libraries have been methodically reworked into a set of
independent, cross platform classes that now are available to all Qt developers.

The journey started at the Randa Meetings back in 2011, where porting KDE
Platform 4 to Qt 5 was initiated. But as part of this effort, modularizing of

1.1. HISTORY 3

libraries, integrating portions properly into Qt 5 and modularizing was begun.
Three years later, Frameworks 5 was released. Today you can save yourself the
time and effort of repeating work that others have done, relying on over 50
Frameworks with mature, well tested code.

4 CHAPTER 1. FRAMEWORKS 5

Chapter 2

Concurrent programming
using ThreadWeaver

2.1 HelW olorld!

Concurrent programming means creating applications that perform multiple
operations at the same time. A common problem is that the user sees the
application pause. A typical requirement is that an operation which may take
an arbitrary amount of time because it is, for example, performing disk I/O,
is scheduled for execution but immediately taken off the main thread of the
application (the one that starts main()). To illustrate how this problem would
be solved and to jump right into using ThreadWeaver, let’s simulate this problem
by printing Hello World! as the asynchronous payload.

28 #include <QtCore>
29 #include <ThreadWeaver/ThreadWeaver>
30

31 int main(int argc, char** argv)
32 {
33 QCoreApplication app(argc, argv);
34

35 using namespace ThreadWeaver;
36 stream() << make_job([]() { qDebug() << "Hello World!"; });
37 }

This short but complete program written in C++11 outputs the common greeting
to the command line.1 It does so, however, from a worker thread managed by the

1The examples are part of the ThreadWeaver source code and can be found at
https://api.kde.org/frameworks/threadweaver/html/index.html.

5

6CHAPTER 2. CONCURRENT PROGRAMMING USING THREADWEAVER

global ThreadWeaver queue. The header file ThreadWeaver/ThreadWeaver.h
included in line 2 contains the essential declarations needed to use the most
common ThreadWeaver operations. The components used in this example are
the global queue, a job and a queueing mechanism. The global queue is a
singleton instance of the ThreadWeaver thread pool that is instantiated when it
is first accessed after the application starts. A job represents “something” that
should be executed asynchronously. In this case, the thing to execute is a C++
lambda function that prints the welcome message. The queueing mechanism
used here is a queue stream, an API inspired by the iostream family of classes.
ThreadWeaver builds on top of Qt, and similar to most Qt applications requires
a QCoreApplication (or one of it’s descendents) to exist throughout the lifetime
of the application. Up to line 7, the program looks like any other Qt application.

To have the job lambda function called by one of the worker threads, a job
is created that wraps it using the make_job() function. It is then handed to
the queue stream. The queue stream will submit the jobs for execution when
the queuing command is completed that is at the closing semicolon. Once the
job is queued, one of the worker threads will automatically pick it up from the
queue and execute it. ThreadWeaver::Job is the unit of execution handled by
ThreadWeaver queues. Jobs are simple runnable types that perform one task,
defined in their run() method. Some jobs wrap a lambda function as in this
example or decorate other jobs. However implementing custom, reusable job
classes is only a matter of writing a class that inherits ThreadWeaver::Job and
re-implement its run method. The job that was created by make_job() in this
example wraps the specified lambda function, and executes it when it is itself
executed by a worker thread.

The program does not specify where the job should be executed, and not even
when exactly. In a scenario where there would be many jobs waiting in the
queue, execution of the new job would not be immediate. Which worker thread
will be assigned the job is also undefined. The programmer gives up a bit of
control over the details of execution, and in turns benefits from the automatic
distribution of jobs amongst the available processors by the worker threads in
the queue. Every program that links the ThreadWeaver library has access to a
global queue for the execution of jobs. If no queue is specified when enqueueing
a job, the global one will be used by default. Workers threads are allocated when
needed by the queue. If the global pool is never accessed by an application, it
will never be instantiated.

An application performing tasks in background threads should never exit while
any of these operations is still in progress. In the case of ThreadWeaver, this
means all jobs in the queue need to be either completed or dequeued and all
worker threads idle before the application may exit. The global pool is in fact
a QObject child of the QCoreApplication object instantiated in line 7. It will
be deleted by the destructor of QCoreApplication. When it is destroyed, it will
wait until all queued up jobs have completed. The program will thus wait in
line 8 until the job has finished printing “Hello World!”, and will then exit. The

2.2. ADDING THREADWEAVER TO A PROJECT - AN INTRODUCTION TO THE FRAMEWORKS 5 BUILD SYSTEM7

job was enqueued as a shared pointer, so memory management is taken care
of. While this example was very much simplified, the described functionality
already has many practical applications. For example, the many operations
real-life applications need to perform at startup, like loading translations, icon
resources et cetera, can be removed from the criticial path this way. In this case
the operations usually need to be performed in a certain order and then handed
over to the main thread. Solutions for that will be discussed in a later chapter.

2.2 Adding ThreadWeaver to a project - an in-
troduction to the Frameworks 5 build system

Two standard questions occur to programmers when learning a new technology
or toolkit as a programmer - how do I use it, and how do I add this module to
and deploy it with my project. The answer to the second question requires at
some knowledge about the build system used, and will be covered in this chapter.
While it will use ThreadWeaver to explain the details, the workflow presented is
generic and could be similarly applied when adding other KDE frameworks.
KDE frameworks use the CMake build system.2 In essence, CMake is a generator
of native project build instructions (Makefiles, for example) based on a project
build description, the CMakeLists.txt file. CMake is common especially for
C++ projects, and is used to build all of KDE software. The basic concepts are
powerful, expressive and relatively easy to use. In addition, CMake is portable
and generates build instructions for all relevant target platforms including not
just Linux, but also OSX and Windows. This portability supports the goal
of KDE and its frameworks to be available from a single source on as many
platforms as possible. In the following steps, the essential bits of the complete
CMakeLists.txt file for ThreadWeaver’s HelloWorld example are going to be
explained. The real world relevance of this use case is to build an application
that uses and links a KDE framework, in this case ThreadWeaver.

5 cmake_minimum_required(VERSION 2.8.12)
6 find_package(ECM 1.1.0 REQUIRED NO_MODULE)

The first two lines define a minimum CMake version and make sure the extra
CMake modules (ECM) used by the KDE project are detected by CMake. These
two lines are not required, but it is a good idea to have them. Specifying a
minimum CMake version at the beginning of the file prevents cryptic, hard to
understand errors that may be caused by an older installed CMake version trying
to parse the file any further. Similarly, ECM would be automatically detected if
it is installed, but by explicitly looking for it, a clear error message is triggered
if it cannot be found. However these two lines are just in preparation for the
next bits that are more specific to the projects.

2http://www.cmake.org

8CHAPTER 2. CONCURRENT PROGRAMMING USING THREADWEAVER

12 find_package(KF5ThreadWeaver ${KF5_VERSION} REQUIRED)

The find_package statement detects the ThreadWeaver include files and libraries
and provides them so that they can later be used to build and link concrete
targets, like libraries or applications. Because the find_package statement
marks the framework as required, the statement will fail if ThreadWeaver cannot
be detected by CMake. In this case, make sure the framework is properly
installed, including the development package that usually contains the header
files. On failure to detect ThreadWeaver, CMake will abort and not generate
any makefiles.

17 # Define the project name
18 project(HelloWorld)
19 # Add the HelloWorld executable and link the ThreadWeaver
20 # library to it
21 add_executable(ThreadWeaver_HelloWorld HelloWorld.cpp)
22 target_link_libraries(ThreadWeaver_HelloWorld KF5::ThreadWeaver)

The last snippet defines the actual meat of the project. It specifies
the project name to be HelloWorld, and adds an executable named
ThreadWeaver_HelloWorld that is built from one source file, HelloWorld.cpp.
The last line uses the target_link_libraries command to specify that
to build the ThreadWeaver_HelloWorld executable, it should link the
ThreadWeaver libraries. The libraries are specified using a scoped named
variable, KF5::ThreadWeaver. This variable has been defined by the earlier
find_package command. Every KDE framework defines a named variable like
that that should be used to link the respective libraries.

2.3 Hello World! with queueing multiple jobs

The first example showed nothing that would have required multiple threads to
print Hello World!, and also did not mention anything about at what time jobs
get deleted. Object life span is of course a crucial questions when programming
in C++. So of what type is the value that is returned by make_job in the first
example?

The returned object is of type JobPointer, which is a QSharedPointer to Job.
When make_job is executed, it allocates a Job that will later execute the C++
lambda function, and then embeds it into a shared pointer. Shared pointers
count references to the object pointer they represent, and delete the object when
the last reference to it is destroyed. In a way, they are single-object garbage
collectors. In the example, the new job is immediately handed over to the queue
stream, and no reference to it is kept by main(). This approach is often called
“fire-and-forget jobs”. The queue will process the job and forget about it when

2.3. HELLO WORLD! WITH QUEUEING MULTIPLE JOBS 9

it has been completed. It will then definitely get deleted automatically, even
though the programmer does not necessarily know exactly when. It could happen
(and in the case of ThreadWeaver jobs commonly does) deeply in the bowels
of Qt event handling when the last event holding a reference to the job gets
destroyed. The gist of it is that from the programmers point of view, it is not
necessary to keep a reference to a job and delete it later. With that in mind, no
further memory management is required in the HelloWorld example, and the
program is complete.
Fire-and-forget jobs are not always the right tool. For example, if a job is
retrieving and parsing some data, the application needs to access the data once
the job is complete. For that, the programmer could implement a custom job
class.

33 class QDebugJob : public Job {
34 public:
35 QDebugJob(const char* message = 0) : m_message(message) {}
36 protected:
37 void run(JobPointer, Thread*) {
38 qDebug() << m_message;
39 }
40 private:
41 const char* m_message;
42 };

The QDebugJob class simply prints a message to qDebug() when it is executed.
To implement such a custom job class, it is inherited from ThreadWeaver::Job.
By overloading the run() method, the “payload”, the operation performed by
the job, is being defined. The parameters to the run method are the job as the
queue sees it, and the thread that is executing the job. The first parameter may
be surprising. The reason that there may be a difference between the job that
the queue sees and this is that jobs may be decorated, that means wrapped in
something else that waddles and quacks like a job, before being queued. How
this works will be explained later, what is important to keep in mind for now is
not to assume to always find this in the queue.

46 int main(int argc, char** argv)
47 {
48 QCoreApplication app(argc, argv);
49 // Allocate jobs as local variables:
50 QDebugJob j1("Hello");
51 QDebugJob j2("World!");
52 JobPointer j3(new QDebugJob("This is..."));
53 Job* j4 = new QDebugJob("ThreadWeaver!");
54 // Queue the Job using the default Queue stream:
55 stream() << j1 << j2 // local variables

10CHAPTER 2. CONCURRENT PROGRAMMING USING THREADWEAVER

56 << j3 // a shared pointer
57 << j4; // a raw pointer
58 // Wait for finish(), because job is destroyed
59 // before the global queue:
60 Queue::instance()->finish();
61 }

This time, in the main() function, four jobs in total will be allocated. Two
of them as local variables (j1 and j2), one (j3) dynamically and saved in a
JobPointer, and finally j4 is allocated on the heap with new. All of them are
then queued up for execution in one single command. Wait, what? Right. Local
variables, job pointers and raw pointers are queued the same way and may be
mixed and matched using the stream operators. When a local variable is queued,
a special shared pointer will be used to hold it which does not delete the object
when the reference count reaches zero. A JobPointer is simply a shared pointer.
A raw pointer will be considered a new object and automatically wrapped in a
shared pointer and deleted when it goes out of scope. Even though three different
kinds of objects are handed over to the stream, in all three cases the programmer
does not need to put special consideration into memory management and the
object life cycles.

Now before executing the program, pause for a minute and think about what
you expect it to print.

World!
This is...
Hello
ThreadWeaver!

Four jobs are being queued all at the same time, that is when the stream()
statement closes. Assuming there is more than one worker thread, the order
of execution of the jobs is undefined. The strings will be printed in arbitrary
order. In case this comes as a surprise, it is important to keep in mind that by
default, there is no relation between jobs that defines their execution order. This
behaviour is in line with how thread pools normally work. In ThreadWeaver,
there are ways to influence the order of execution by declaring dependencies
between them or aggregating multiple jobs into collections or sequences. More
on that later.

Before the end of main(), the application will block and wait for the queue to
finish all jobs. This was not needed in the first HelloWorld example, so why is it
necessary here? As explained there, the global queue will be destroyed when the
QCoreApplication object is destroyed. If main() would exit before j1 and j2
have been executed, it’s local variables including j1 and j2 would be destroyed.
In the destructor of QCoreApplication the queue would wait to finish all jobs,
and try to execute j1 and j2, which have already been destructed. Mayhem

2.4. DOING THINGS IN A SEQUENCE 11

would ensue. When using local variables as jobs, make sure that they have
been completed before destroying them. The finish() method of the queue
guarantees that it no more holds references to any jobs that have been executed.

2.4 Doing things in a Sequence

The time when an application starts, especially one that needs to load quite
some data, is usually one of contention. Translations need to be loaded and
resources like icons and images initialized. As the application matures, more
and more of such tasks are piled on to it. It will have to check for updates from
a server, and load a greeting of the day to the user. Eventually, the application
will take ages to load, users will tweet about how they are making coffee while it
comes up, and the programmers will start to find a solution.

The application will come up a lot faster if it defers as many tasks as possible
while it creates and shows the user interface, and also takes as many as possible
of the startup tasks of an application off the main thread. The main thread is
the one that runs when main() is entered, and in which the user interface lives.
Everything that slows down or intermittendly blocks the main thread may be
experienced by the user as the user interface being sluggish or hung. This is a
common use case where concurrent programming can help.

But . . . this is also one of the examples where standard thread pools fail. The
startup tasks commonly need to be done in a certain order and are of different
priority, and also should not be all tackled by the application process at the same
time. For example, the applications icons and translations may be needed first
and urgently, where the information on available updates can still be processed a
couple of seconds later. There are ways around this that are rather cumbersome,
like using timers to queue up some tasks later or using chains of functions that
queue up new tasks when one group is done. The following example will illustrate
some aspects of how ThreadWeaver comes with the necessary tools to specify
the order of tasks, on application startup and otherwise. The following main()3

function allocates a main widget and an object of type ViewController that
takes care of the startup tasks.

7 int main(int argc, char *argv[])
8 {
9 QApplication a(argc, argv);

10 MainWidget w;
11 ViewController v(&w);
12 w.show();
13 a.exec();
14 }

3See examples/HelloInternet in the ThreadWeaver repository.

12CHAPTER 2. CONCURRENT PROGRAMMING USING THREADWEAVER

The example application shows an image that it eventually loads from the
network, and a caption for it. In the constructor of ViewController, the
startup operations need to be kicked off. The operations in this example are

• to load a placeholder image that is shown while the application loads the
image and caption from the network,

• to load the post that contains the caption, but only the URL of the image
to show,

• and then, once the image URL is known, to finally load the image from
the network and display it.

The application’s user interface will be shown right away, even before step 1 has
been completed. Let’s assume that the three steps need to be done in order, not
in parallel.
The important aspect is to do as little as possible in the constructor, considering
that it is called from the main thread. Creating jobs and queueing them is not
expensive however, so the constructor focuses on that and then returns.

21 {
22 connect(this, SIGNAL(setImage(QImage)),
23 mainwidget, SLOT(setImage(QImage)));
24 connect(this, SIGNAL(setCaption(QString)),
25 mainwidget, SLOT(setCaption(QString)));
26 connect(this, SIGNAL(setStatus(QString)),
27 mainwidget, SLOT(setStatus(QString)));
28

29 using namespace ThreadWeaver;
30 auto s = new Sequence;
31 *s << make_job([=]() { loadPlaceholderFromResource(); })
32 << make_job([=]() { loadPostFromTumblr(); })
33 << make_job([=]() { loadImageFromTumblr(); });
34 stream() << s;
35 }

Remember the assumption that the three startup steps have to be performed
in order. The new thing here is that instead of queueing individual jobs, the
constructor creates a Sequence, and then adds jobs to that. A sequence has
the jobs performed by the thread pool in the order they have been added to it.
The jobs each simply call a member function of ViewController when being
executed. ThreadWeaver’s execution logic guarantees that the next job is only
executed after the previous one has been finished. Because of that, only one of
the member functions will be called at a time, and they will be called in the
order the jobs have been added to the sequence.
Since only one of the member functions will be called at a time, there is no need
for further synchronization of access to the member variables of ViewController.

2.4. DOING THINGS IN A SEQUENCE 13

This raises the question of how the controller submits new captions, statuses
and images to the main widget. It would be a mistake to simply call member
functions of the main widget from the methods of ViewController, since these
are executed from a worker thread. The controller submits update by using
Qt signals that are connected to corresponding slots in the main widget. The
parameters of the signals are passed by value, not by reference or pointers,
making use of the implicit sharing built into Qt to avoid copying. This approach
relies on the fact that the reference counting of Qt’s implicit-sharing mechanism
is thread safe.

44 void ViewController::loadPlaceholderFromResource()
45 {
46 QThread::msleep(500);
47 showResourceImage("IMG_20140813_004131.png");
48 emit setStatus(tr("Downloading post..."));
49 }

The method loadPlaceholderFromResource() implements the first step, to
load an image from a resource that acts as a place holder until the real images
has been downloaded. It cheats to appear busy by first sleeping for a short
while. While it does so, the user interface will already appear to the user, with
a blank background. It then emits a signal to make the main widget show a
status message that indicates the program is downloading the post.

The method is called from the worker thread that executes the job, not the main
thread. When the signal is emitted, Qt notices that sender and receiver are not in
the same thread at the time, and sends the signal asynchroneously. The receiver
will not be called from the thread executing loadPlaceholderFromResource(),
instead it will be invoked from the event loop of the main thread. That means
there is no shared data between the controller and the main widget for processing
the signal, and no further serialization of access to the QString variable holding
the status text is necessary.

Once the method returns and the job executing it completes, the next job of the
sequence will be unlocked. This causes the method loadPostFromTumblr() to
be executed by a worker thread. This method illustrates the convenience built
into Qt to process data present in Open Standard formats (XML, in this case),
even though this won’t be discussed here in detail.4 If processing the data turns
out to be expensive, the user interface will not be blocked by it, since it is not
performed by the main thread.

53 void ViewController::loadPostFromTumblr()
54 {
55 const QUrl url(m_apiPostUrl);

4The example uses the Tumblr API version 1.

https://www.tumblr.com/docs/en/api/v1

14CHAPTER 2. CONCURRENT PROGRAMMING USING THREADWEAVER

56

57 auto const data = download(url);
58 emit setStatus(tr("Post downloaded..."));
59

60 QDomDocument doc;
61 if (!doc.setContent(data)) {
62 error(tr("Post format not recognized!"));
63 }
64

65 auto textOfFirst = [&doc](const char* name) {
66 auto const s = QString::fromLatin1(name);
67 auto elements = doc.elementsByTagName(s);
68 if (elements.isEmpty()) return QString();
69 return elements.at(0).toElement().text();
70 };
71

72 auto const caption = textOfFirst("photo-caption");
73 if (caption.isEmpty()) {
74 error(tr("Post does not contain a caption!"));
75 }
76 emit setCaption(caption);
77 auto const imageUrl = textOfFirst("photo-url");
78 if (imageUrl.isEmpty()) {
79 error(tr("Post does not contain an image!"));
80 }
81

82 m_fullPostUrl = attributeTextFor(doc, "post", "url-with-slug");
83 if (m_fullPostUrl.isEmpty()) {
84 error(tr("Response does not contain URL with slug!"));
85 }
86 m_imageUrl = QUrl(imageUrl);
87 showResourceImage("IMG_20140813_004131-colors-cubed.png");
88 emit setStatus(tr("Downloading image..."));
89 QThread::msleep(500);
90 }

In case an error occurs, the method invokes another method called error().
error() indicates the problem to the user by setting a status messages in the
main widget. But it also apparently aborts the execution of the sequence, as the
code assumes it does not continue after calling it.

126 void ViewController::error(const QString &message)
127 {
128 showResourceImage("IMG_20140813_004131-colors-cubed.png");
129 emit setCaption(tr("Error"));

2.4. DOING THINGS IN A SEQUENCE 15

Figure 2.1: Hello Internet

130 emit setStatus(tr("%1").arg(message));
131 throw ThreadWeaver::JobFailed(message);
132 }

error() shows a different placeholder image, and emits the status message to
the main widget. It then raises an exception of type ThreadWeaver::JobFailed,
which will be caught by the worker thread executing the current job. The worker
thread sets the status of the job to a failed state. Specific to sequences (because
only sequences know the order of the execution of their elements), this will cause
the sequence to abort the execution of it’s remaining elements. Raising the
exception will abort the processing of the job, but not terminate the worker
thread. Leaking any other type of exception than ThreadWeaver::Exception
from the run() method of a job is considered a runtime error. The exception
will not be caught by the worker thread, and the application will terminate.

The example illustrates the steps necessary to perform concurrent operations
in a certain order. It also shows how a specialized object (ViewController, in
this case) can handle the data shared between the sequential operations, how
to submit data and status information back to the user interface, and how to
signal error conditions from job execution.

16CHAPTER 2. CONCURRENT PROGRAMMING USING THREADWEAVER

2.5 Working title: Everything in moderation
(and decorated)

Let’s put the features that have been described so far and a few more that as
of yet haven’t been mentioned, and create a comprehensive example program.
The example program calculates thumbnails for images. It will take a number of
image files and, in separate steps implemented as individual jobs, load them from
disk, convert them from raw data to QImages, scale the images to thumbnails,
and finally save them to disk. This problem may not be most imaginative use
of concurrent programming techniques, but it does demonstrate a number of
practical problems. For example, the operations for each single image contain
elements that are file system I/O bound and elements that are CPU bound.
For large numbers of images, it has to deal with a trade-off of memory usage
and CPU utlilization. Less obvious, there are also expectations on the order of
execution of the jobs, so that the interface provides the user with visible feedback
of the progress of the operations. An application of this kind also should provide
features of load management and reduce it’s own generated system load if the
system is “stressed” by other processes. A web server implementation or a video
coding program will have to solve similar issues to provide optimal throughput
without overloading the system.

Chapter 3

KArchive

When you are storing large amounts of data, how do you archive it in a easy
way from within your code? The KArchive framework provides a quick and easy
way to do this from within Qt apps.
While Qt5 provides the QZipWriter and QZipReader classes, these are limited
only to Zips. KArchive on the other hand supports a wide array of formats such
as p7zip, tar and ar archives, giving you the flexibility of choosing the formats
which fit your project.

3.1 Show me the code

Here’s a simple ‘Hello World’ example of KArchive.

46 // Create a zip archive
47 KZip archive(QStringLiteral("hello.zip"));
48

49 // Open our archive for writing
50 if (archive.open(QIODevice::WriteOnly)) {
51

52 // The archive is open, we can now write data
53 archive.writeFile(QStringLiteral("world"), // File name
54 QByteArray("The whole world inside a hello."), // Data
55 0100644, // Permissions
56 QStringLiteral("owner"), // Owner
57 QStringLiteral("users")); // Group
58

59 // Don't forget to close!
60 archive.close();
61 }

17

18 CHAPTER 3. KARCHIVE

More files can be added by subsequent calls to writeFile(). You also add folders
to your zip by using the writeDir call as follows :

archive.writeDir(QStringLiteral("world dir"));

Full API docs can be found here

3.2 Advanced usecases

3.2.1 Sending compressed data over networks

KArchive also supports reading and writing compressed data to devices such as
buffers or sockets via the KCompressionDevice class allowing developers to save
bandwidth while transmitting data over networks.

A quick example of the KCompressionDevice class can be summed up as:

70 // Open the input archive
71 KCompressionDevice input(&file, false, KCompressionDevice::BZip2);
72 input.open(QIODevice::ReadOnly);
73

74 QString outputFile = (info.completeBaseName() + QStringLiteral(".gz"));
75

76 // Open the new output file
77 KCompressionDevice output(outputFile, KCompressionDevice::GZip);
78 output.open(QIODevice::WriteOnly);
79

80 while(!input.atEnd()) {
81 // Read and uncompress the data
82 QByteArray data = input.read(512);
83

84 // Write data like you would to any other QIODevice
85 output.write(data);
86 }
87

88 input.close();
89 output.close();

https://api.kde.org/frameworks/karchive/html/index.html

Chapter 4

KItemModels

4.1 Abstract

KItemModels is a set of classes built for or on top of Qt’s model view system. It
contains a collection of additional proxy models and other utilities to help make
complex tasks around models simpler. The following chapter will go through all
of them one by one

4.2 KBreadcrumbSelectionModel

The KBreadcrumbSelectionModel is a selection model that ensures that some
or all parents of items in trees are selected when a given item is selected.
KBreadcrumbSelectionModel makes creating breadcrumb navigation bar easy
with this.

4.3 KCheckableProxyModel

The KCheckableProxyModel adds checkable capability to an QAbstractItemModel
without having to modify the model itself and implement the right parts of
data, setData and flags methods. The checkable proxy model also works nicely
together with the KSelectionProxyModel to show the items checked off.

4.4 KDescendantsProxyModel

KDescendantsProxyModel flattens a tree model into a list with the possibility to
still make it visually appear like a tree by indentation or by showing the parent’s

19

http://qt-project.org/doc/qt-5/model-view-programming.html

20 CHAPTER 4. KITEMMODELS

4.5 KLinkItemSelectionModel

KLinkItemSelectionModel makes it possible to share a selection between mul-
tiple views that has different proxy models in between the root model and the
view

4.6 KModelIndexProxyMapper

KModelIndexProxyMapper facilitates mapping between two different branches
of proxy models on top of the same base root model.

4.7 KRecursiveFilterProxyModel

Filtering a tree model where the child items are of interest, QSortFilterProxyModel
is not the right thing. QSortFilterProxyModel does not look at children if a
parent is filtered out. KRecursiveFilterProxyModel goes through the tree and
includes a item and all its parents.

4.8 KSelectionProxyModel

KSelectionProxyModel Convenience filtering model to just show the items that
are included by a QItemSelectionModel

Chapter 5

Spellchecking made easy

Sonnet is a useful framework provided by KDE for software developers who
want to solve the problem of spellchecking in text editors. It has a plugin based
architechture with support for HSpell, Enchant, ASpell and HUNSPELL plugins.
It even supports automated language detection, based on a combination of
different algorithms.

5.1 Spellchecking in your QTextEdit

Sonnet can be easily integrated into your QTextEdit as follows:

59 QTextEdit *textEdit = new QTextEdit;
60 textEdit->setText("This is a sample buffer. Whih this thingg will "
61 "be checkin for misstakes. Whih, Enviroment, govermant. Whih."
62);
63

64 Sonnet::SpellCheckDecorator *installer = new Sonnet::SpellCheckDecorator(textEdit);
65 installer->highlighter()->setCurrentLanguage("en");

Sonnet::SpellCheckDecorator can also be extended in various ways to spell check
text that is formatted differently, for example in emails.

34 class MailSpellCheckDecorator : public Sonnet::SpellCheckDecorator
35 {
36 public:
37 MailSpellCheckDecorator(QTextEdit *edit)
38 : Sonnet::SpellCheckDecorator(edit)
39 {}

21

22 CHAPTER 5. SPELLCHECKING MADE EASY

40

41 protected:
42 bool isSpellCheckingEnabledForBlock(const QString &blockText) const Q_DECL_OVERRIDE
43 {
44 qDebug() << blockText;
45 return !blockText.startsWith(QLatin1Char('>'));
46 }
47 };

So, you can use MailSpellCheckDecorator in exactly the same way as you would
use SpellCheckDecorator, but with the added functionality that MailSpellCheck-
Decorator will ignore quoted parts of a email.

5.2 Language Detection in Sonnet

Sonnet can determine the difference between ~75 languages for a given string. It
is based off a perl script origionaly written by Maciej Ceglowski called Languid.
His script used a two-part heuristic to determine language. First the text is
checked for the scripts it contains, next for each set of languages using those
scripts a n-gram frequency model of a given language is compared to a model of
the text. The most similar language model is assumed to be the language. If no
language is found an empty string is returned.

Here you see a simple example of language detection using the GuessLanguage
class from Sonnet:

GuessLanguage languageGuesser;
QString lang = languageGuesser.identify("My awesome text");

5.3 GUI Widgets provided by Sonnet

Sonnet also provides some GUI widgets that can be used by Qt applications to
configure settings in Sonnet; for example Qt applications can use the Dictio-
naryComboBox class from Sonnet to get a QComboBox that can configure the
dictionary used by Sonnet.

37 void TestDialog::check(const QString &buffer)
38 {
39 Sonnet::Dialog *dlg = new Sonnet::Dialog(
40 new BackgroundChecker(this), 0);
41 connect(dlg, SIGNAL(done(QString)),
42 SLOT(doneChecking(QString)));

5.3. GUI WIDGETS PROVIDED BY SONNET 23

43 dlg->setBuffer(buffer);
44 dlg->show();
45 }

The ConfigDialog class from Sonnet provides a more advanced configuration
dialog to configure settings such as whitelisting words, skipping run-together
words as well as enabling or disabling auto detection of the language.

24 CHAPTER 5. SPELLCHECKING MADE EASY

Chapter 6

Reaching a wider audience

A excellent way of reaching a wider audience with your software is by localizing
it. The KDE community provides the ki18n framework to do this by leveraging
gettext underneath. While Qt provides tr, ki18n is much much more powerful
than tr, and offers writing 3 broad categories of writing messages: General
Messages, Specialized Messages, Placeholder Substitution, while also providing
functionality to include user interface markers to provide better context to
translators.

6.1 Writing Messages

Most messages can be internationalized with simple i18n* calls, which are
described in the “General Messages” section. A few messages may require
treatment with ki18n* calls, and when this is needed is described in the “Special
Messages” section. Argument substitution in messages is performed using the
familiar Qt syntax %<number>, but there may be some differences.

6.1.1 General Messages

General messages are wrapped with i18n* calls. These calls are immediate,
which means that they return the final localized text (including substituted
arguments) as a QString object, that can be passed to UI widgets.

The most frequent message type, a simple text without any arguments, is handled
like this:

QString msg = i18n("Just plain info.");

25

26 CHAPTER 6. REACHING A WIDER AUDIENCE

The message text may contain arbitrary Unicode characters, and the source file
must be UTF-8 encoded. Ki18n supports no other character encoding.

If there are some arguments to be substituted into the message, %<number>
placeholders are put into the text at desired positions, and arguments are listed
after the string:

QString msg = i18n("%1 has scored %2", playerName, score);

Arguments can be of any type for which there exists an overloaded
KLocalizedString::subs method. Up to 9 arguments can be inserted in this
fashion, due to the fact that i18n calls are realized as overloaded templates. If
more than 9 arguments are needed, which is extremely rare, a ki18n* call must
be used.

Sometimes a short message in English is ambiguous to translators, possibly
leading to a wrong translations. Ambiguity can be resolved by providing a
context string along the text, using the i18nc call. In it, the first argument is
the context, which only the translator will see, and the second argument is the
text which the user will see:

QString msg = i18nc("player name - score", "%1 - %2", playerName, score);

In messages stating how many of some kind of objects there are, where the
number of objects is inserted at run time, it is necessary to differentiate between
plural forms of the text. In English there are only two forms, one for number 1
(singular) and another form for any other number (plural). In other languages
this might be more complicated (more than two forms), or it might be simpler
(same form for all numbers). This is handled properly by using the i18np plural
call:

QString msg = i18np("%1 image in album %2", "%1 images in album %2",
numImages, albumName);

The plural form is decided by the first integer-valued argument, which is
numImages in this example. In rare cases when there are two or more inte-
ger arguments, they should be ordered carefully. It is also allowed to omit the
plural-deciding placeholder, for example:

QString msg = i18np("One image in album %2", "%1 images in album %2",
numImages, albumName);

or even:

6.1. WRITING MESSAGES 27

QString msg = i18np("One image in album %2", "More images in album %2",
numImages, albumName);

If the code context is such that the number is always greater than 1, the plural
call must be used nevertheless. This is because in some languages there are
different plural forms for different classes of numbers; in particular, the singular
form may be used for numbers other than 1 (e.g. those ending in 1).
If a message needs both context and plural forms, this is provided by i18ncp
call:

QString msg = i18ncp("file on a person", "1 file", "%1 files", numFiles);

In the basic i18n call (no context, no plural) it is not allowed to put a literal
string as the first argument for substitution. In debug mode this will even
trigger a static assertion, resulting in compilation error. This serves to prevent
misnamed calls: context or plural frequently needs to be added at a later point
to a basic call, and at that moment the programmer may forget to update the
call name from i18n to i18nc/p.
Furthermore, an empty string should never be wrapped with a basic i18n call
(no i18n("")), because in translation catalog the message with empty text has
a special meaning, and is not intended for client use. The behavior of i18n("")
is undefined, and there will be some warnings in debug mode.

6.1.2 Specialized Messages

There are some situations where i18n* calls are not sufficient, or are not con-
venient enough. One obvious case is if more than 9 arguments need to be
substituted. Another case is if it would be easier to substitute arguments later
on, after the line with the i18n call. For cases such as these, ki18n* calls can be
used. These calls are deferred, which means that they do not return the final
translated text as QString, but instead return a KLocalizedString instance
which needs further treatment. Arguments are then substituted one by one
using KLocalizedString::subs methods, and after all arguments have been
substituted, the translation is finalized by one of KLocalizedString::toString
methods (which return QString). For example:

KLocalizedString ks;
case (reportSource) {

SRC_ENG: ks = ki18n("Engineering reports: %1"); break;
SRC_HEL: ks = ki18n("Helm reports: %1"); break;
SRC_SON: ks = ki18n("Sonar reports: %1"); break;
default: ks = ki18n("General report: %1");

}
QString msg = ks.subs(reportText).toString();

28 CHAPTER 6. REACHING A WIDER AUDIENCE

subs methods do not update the KLocalizedString instance on which they are
invoked, but return a copy of it with one argument slot filled. This allows to
use KLocalizedString instances as a templates for constructing final texts, by
supplying different arguments.

Another use for deferred calls is when special formatting of arguments is needed,
like requesting the field width or number of decimals. subs methods can take
these formatting parameters. In particular, arguments should not be formatted
in a custom way, because subs methods will also take care of proper localization
(e.g. use either dot or comma as decimal separator in numbers, etc):

// BAD (number not localized):
QString msg = i18n("Rounds: %1", myNumberFormat(n, 8));
// Good:
QString msg = ki18n("Rounds: %1").subs(n, 8).toString();

Like with i18n, there are context, plural, and context-plural variants of ki18n:

ki18nc("No function", "None").toString();
ki18np("File found", "%1 files found").subs(n).toString();
ki18ncp("Personal file", "One file", "%1 files").subs(n).toString();

toString methods can be used to override the global locale. To override only
the language of the locale, toString can take a list of languages for which to
look up translations (ordered by decreasing priority):

QStringList myLanguages;
...
QString msg = ki18n("Welcome").toString(myLanguages);

This section describes how to specify the translation domain, a canonical name
for the catalog file from which *i18n* calls will draw translations. But toString
can always be used to override the domain for a given call, by supplying a specific
domain:

QString trName = ki18n("Georgia").toString("country-names");

Relevant here is the set of ki18nd* calls (ki18nd, ki18ndc, ki18ndp, ki18ndcp),
which can be used for the same purpose, but which are not intended to be used
directly. Please refer to this page to check when these calls should be made.

https://api.kde.org/frameworks/ki18n/html/prg_guide.html#link_cat
http://api.kde.org/frameworks-api/frameworks5-apidocs/ki18n/html/prg_guide.html#link_cat

6.1. WRITING MESSAGES 29

6.1.2.1 Dynamic Contexts

Translators are provided with the capability to script translations, such that
the text changes based on arguments supplied at run time. For the most
part, this feature is transparent to the programmer. However, sometimes the
programmer may help in this by providing a dynamic context to the message,
through KLocalizedString::inContext methods. Unlike the static context,
the dynamic context changes at run time; translators have the means to fetch it
and use it to script the translation properly. An example:

KLocalizedString ks = ki18nc("%1 is user name; may have "
"dynamic context gender=[male,female]",
"%1 went offline");

if (knownUsers.contains(user) && !knownUsers[user].gender.isEmpty()) {
ks = ks.inContext("gender", knownUsers[user].gender);

}
QString msg = ks.subs(user).toString();

Any number of dynamic contexts, with different keys, can be added like this.
Normally every message with a dynamic context should also have a static context,
like in the previous example, informing the translator of the available dynamic
context keys and possible values. Like subs methods, inContext does not modify
the parent instance, but returns a copy of it.

6.1.3 Placeholder Substitution

Hopefully, most of the time %<number> placeholders are substituted in the way
one would intuitively expect them to be. Nevertheless, some details about
substitution are as follows.

Placeholders are substituted in one pass, so there is no need to worry about
what will happen if one of the substituted arguments contains a placeholder,
and another argument is substituted after it.

All same-numbered placeholders are substituted with the same argument.

Placeholders directly index arguments: they should be numbered from 1 upwards,
without gaps in the sequence, until each argument is indexed. Otherwise, error
marks will be inserted into message at run time (when the code is compiled
in debug mode), and any invalid placeholder will be left unsubstituted. The
exception is the plural-deciding argument in plural calls, where it is allowed to
drop its placeholder, in either the singular or the plural text.

If none of the arguments supplied to a plural call is integer-valued, an error mark
will be inserted into the message at run time (when compiled in debug mode).

30 CHAPTER 6. REACHING A WIDER AUDIENCE

Integer arguments will be by default formatted as if they denote an amount,
according to locale rules (thousands separation, etc.) But sometimes an integer
is a numerical identifier (e.g. port number), and then it should be manually
converted into QString beforehand to avoid treatment as amount:

i18n("Listening on port %1.", QString::number(port));

6.1.3.1 User Interface Markers

In the same way there exists a HIG (Human Interface Guidelines) document
for the programmers to follow, translators should establish HIG-like convention
for their language concerning the forms of UI text. Therefore, for a proper
translation, the translator will need too know not only what does the message
mean, but also where it figures in the UI. E.g. is the message a button label, a
menu title, a tooltip, etc.

To this end a convention has been developed among KDE translators, which
programmers can use to succinctly describe UI usage of messages. In this conven-
tion, the context string starts with an UI marker of the form @<major>:<minor>,
and may be followed by any other usual context information, separated with a
single space:

i18nc("@action:inmenu create new file", "New");

The major and minor component of the UI marker are not arbitrary, but are
drawn from a table which can be found here.

For much more detail, see https://api.kde.org/frameworks/ki18n/html/prg_guide.html

https://api.kde.org/frameworks/ki18n/html/prg_guide.html#good_ctxt

Chapter 7

Creating a new application

You have an awesome idea. The idea which will change the world, which will
bring everybody a bright future. This idea needs to be implemented now, so you
sit down and do it. Your toolkit of choice is Qt, what else?
There are many ways to start a new Qt application. One of them is using the
tool kapptemplate, which generates a fresh skeleton of an application you can
then fill with all the goodness your idea brings.

7.1 Starting a new application from a template

So you run kapptemplate and start the wizard. First you have to choose which
template to use. We use the “Minimal C++ KDE Frameworks” one. This will
get us started and open up a bunch of nice opportunities coming from KDE
Frameworks. More about that later.
We enter the name of our new application “BrightFuture” and continue the
wizard.
Now we just need to enter some basic data about the application, the initial
version number, author, and where the code should be stored. This will usually
already be neatly pre-filled.
Now continue and finish the wizard and you have the initial code ready for your
new application.
Before you compile the code, we highly recommend to first create a build
folder that will be separated from your source folder. That’s because when you
start compiling the application, the build system will create lots of files during
the compilation and the folder with your source code could quickly become
overpopulated with files. This way you’ll have a clean separation between source
code and the compiled binary files.

31

32 CHAPTER 7. CREATING A NEW APPLICATION

Figure 7.1: Choose application template

7.1. STARTING A NEW APPLICATION FROM A TEMPLATE 33

Figure 7.2: Enter data

34 CHAPTER 7. CREATING A NEW APPLICATION

Go to the code folder, create a “build” folder and cd into it

mkdir build
cd build

Now compile it with

cmake ..
make

Run it with

src/brightfuture

and there you are. Greetings from KDE to your new application.

7.2 Walking through the skeleton

Let’s have a look at what was generated there and walk through the initial code.

7.2.1 main.cpp

The starting point is main.cpp. That’s where the application is set up. The first
line of the main function creates an application object:

31 QApplication application(argc, argv);

This is straightforward, but there is one important thing to notice, especially if
you have not seen KDE applications before. We use a QApplication; that’s with
a Q not a K. So no special setup is needed anymore for writing applications with
KDE Frameworks. It’s just a Qt application, and you can later add whatever
you need whenever you want.

The scope of your idea of course doesn’t stop at language barriers, so the template
conveniently sets up internationalization of the texts in your application under a
dedicated translation domain:

35 KLocalizedString::setApplicationDomain("brightfuture");

The next step is to set up some basic information about the application, so that
this can be shown to users and wherever else this is useful:

brightfuture/src/main.cpp

7.2. WALKING THROUGH THE SKELETON 35

38 KAboutData aboutData(QStringLiteral("brightfuture"),
39 i18n("Simple App"),
40 QStringLiteral("0.1"),
41 i18n("A Simple Application written with KDE Frameworks"),
42 KAboutLicense::GPL,
43 i18n("(c) 20013-2014, Cornelius Schumacher <schumacher@kde.org>"));
44

45 aboutData.addAuthor(i18n("Cornelius Schumacher"),i18n("Author"), QStringLiteral("schumacher@kde.org"));
46 aboutData.setProgramIconName("brightfuture");

This makes use of the data you entered in the wizard before. Note that it uses
the i18n function to translate all strings visible to users. This comes from the
KDE Framework k18n.

The KAboutData class comes from the KDE Framework kcoreaddons.

As the next step, the command line is parsed, so users can get help about the use
of the program from the command line, information about author and version
and whatever options BrightFuture will need:

49 QCommandLineParser parser;
50 parser.addHelpOption();
51 parser.addVersionOption();
52 aboutData.setupCommandLine(&parser);
53 parser.process(application);
54 aboutData.processCommandLine(&parser);

Finally we show the application’s main window and give control to the user:

58 BrightFuture *appwindow = new BrightFuture;
59 appwindow->show();
60 return application.exec();

7.2.2 BrightFuture

The main window is implemented in the class BrightFuture. Let’s have a look.

The header brightfuture.h is minimal:

31 /**
32 * This class serves as the main window for BrightFuture. It handles the
33 * menus, toolbars and status bars.
34 *
35 * @short Main window class
36 * @author Your Name <mail@example.com>

brightfuture/src/brightfuture.h

36 CHAPTER 7. CREATING A NEW APPLICATION

37 * @version 0.1
38 */
39 class BrightFuture : public QMainWindow
40 {
41 Q_OBJECT
42 public:
43 /**
44 * Default Constructor
45 */
46 BrightFuture();
47

48 /**
49 * Default Destructor
50 */
51 virtual ~BrightFuture();
52

53 private:
54 // this is the name of the root widget inside our Ui file
55 // you can rename it in designer and then change it here
56 Ui::mainWidget m_ui;
57 };

It defines a window inherited from QMainWindow and adds a main widget
Ui::mainWidget m_ui;, which is defined in the Qt Designer file brightfuture.ui.

The implementation brightfuture.cpp brings the application to life in its con-
structor:

27 QWidget *widget = new QWidget(this);
28 setCentralWidget(widget);
29 m_ui.setupUi(widget);

This is standard Qt code. We will add a little bit more here later.

7.3 Plotting the future

We know the future is bright, so let our application plot it. KDE Frameworks
comes with the framework KPlotting, which is able to do simple plots. See the
KPlotting API for more information. We will use it to plot a set of data points
in our main window.

To make use of the framework, declare that you are using it in your main
CMakeLists.txt file. Simply add Plotting to the find_package statement for
the KDE Frameworks libraries (it uses KF5 as a shortcut):

brightfuture/src/brightfuture.ui
brightfuture/src/brightfuture.cpp
https://api.kde.org/frameworks/kplotting/html/index.html
brightfuture2/CmakeLists.txt

7.3. PLOTTING THE FUTURE 37

find_package(KF5 REQUIRED COMPONENTS
CoreAddons
I18n
Plotting

)

You also have to link to the library in the CMakeLists.txt file in the src directory
where the source files of the application are defined, and how they are linked
to the required libraries. Add KF5::Plotting to the target_link_libraries
statement there:

target_link_libraries(brightfuture
Qt5::Widgets
KF5::CoreAddons
KF5::I18n
KF5::Plotting

)

Now we can write the actual code to plot the future. We add that to the
constructor of the main window and replace the code, which was generated by
the template generator there:

30 KPlotWidget *plot = new KPlotWidget(this);
31 setCentralWidget(plot);
32

33 plot->setLimits(-1, 11, -1, 40);
34

35 KPlotObject *po =
36 new KPlotObject(Qt::white, KPlotObject::Bars, 2);
37 po->setBarBrush(QBrush(Qt::green, Qt::Dense4Pattern));
38

39 float y = 1;
40 for (float x = 1; x <= 10; x += 1) {
41 po->addPoint(x, y);
42 y *= 1.5;
43 }
44

45 plot->addPlotObject(po);
46

47 plot->update();

That’s all. Here is the plot of the future:

brighfuture2/CMakeLists.txt

38 CHAPTER 7. CREATING A NEW APPLICATION

Figure 7.3: sample plot

7.4 Configuring the color

The future is bright, but everybody has a different preference for its color. So
let’s make the color of the future configurable.
KDE Frameworks offers KConfig, which is a framework for reading and writing
configuration data. We will make use of it in our application to save the color of
the plot we created in the previous section.

7.4.1 Enabling KConfig

As the first we need to add the framework to the main CMakeList.txt, so that
includes and libraries become available:

18 find_package(KF5 REQUIRED COMPONENTS
19 CoreAddons
20 I18n
21 Plotting
22 Config
23)

Then we need to link to the ConfigGui library in the CmakeList.txt file in the
src directory to be able to access the functions KConfig provides:

brightfuture3/CmakeList.txt
brightfuture3/src/CmakeList.txt

7.4. CONFIGURING THE COLOR 39

Figure 7.4: Three-color future

9 target_link_libraries(brightfuture
10 Qt5::Widgets
11 KF5::CoreAddons
12 KF5::I18n
13 KF5::Plotting
14 KF5::ConfigGui
15)

KConfig provides two libraries: KConfigCore and KConfigGui. The core library
contains the basic functionality. The GUI library adds support for data type
used in GUIs. We want to store a color, which is a GUI type, that is why we
link to KConfigGui.

7.4.2 Adding the capability to plot in different colors

To be able to make the color configurable, brightfuture first needs to be able
to plot in different colors. We simply do that by adding three buttons, which
each call a separate slot setting the colors to green, golden, or pink.

This code is straight-forward Qt code. It is in brightfuture.h and brightfuture.cpp.
Have a look there to see the details. We will focus on the configuration code
now.

brightfuture3/src/brightfuture.h
brightfuture3/src/brightfuture.cpp

40 CHAPTER 7. CREATING A NEW APPLICATION

7.4.3 Writing the configuration

We need to classes for dealing with configuration data, KSharedConfig and
KConfigGroup, so we add the include statements for them at the top of the
brightfuture.cpp file:

27 #include <KSharedConfig>
28 #include <KConfigGroup>

KSharedConfig represents a configuration. It is the main class, which provides
access to configuration groups and takes care of storing, reading, and writing
configuration data.

KConfigGroup represents a named configuration group. This is the object you
need to actually read and write configuration data. It takes a name, which is
used to group the configuration in the configuration files.

Now that we have the classes available, we just need to make use of them:

91 void BrightFuture::plotGoldenFuture()
92 {
93 KConfigGroup config(KSharedConfig::openConfig(), "colors");
94 config.writeEntry("plot", QColor("gold"));
95 plotFuture();
96 }

This is the function which is called when pressing one of the color buttons. It
sets the color and then calls the function doing the actual plot. The magic
happens in the first two lines of the function.

The first line creates the KConfigGroup object, which is used to write the
configuration. It uses the application-wide shared configuration object, which is
retrieved by the KSharedConfig::openConfig() call. The second parameter is
the name of the group, where the configuration should be stored.

The second line writes the configuration value we want to store. We simply call
writeEntry on the group object, give it a name of our choice for the configuration
option, and pass the color as the object to store. KConfig does the magic to
figure out how to deal with a QColor object in the configuration file behind the
scenes.

By default configuration is stored in a INI-style text file in the directory
~/.config/brightfuturerc:

[colors]
plot=255,215,0

brightfuture3/src/brightfuture.cpp

7.4. CONFIGURING THE COLOR 41

The name of the configuration file is derived from the application name defined
by KAboutData in the main.cpp file:

38 KAboutData aboutData(QStringLiteral("brightfuture"),
39 i18n("Simple App"),
40 QStringLiteral("0.1"),
41 i18n("A Simple Application written with KDE "
42 "Frameworks"),
43 KAboutLicense::GPL,
44 i18n("(c) 2013-2014, "
45 "Cornelius Schumacher <schumacher@kde.org>"));
46

47 aboutData.addAuthor(i18n("Cornelius Schumacher"),
48 i18n("Author"),
49 QStringLiteral("schumacher@kde.org"));
50 aboutData.setProgramIconName("brightfuture");

7.4.4 Reading the configuration

Now the final step is to read the configuration on startup of the application, so
that the choice of the user is remembered.

This is done in the plotFuture function:

107 void BrightFuture::plotFuture()
108 {
109 KConfigGroup config(KSharedConfig::openConfig(), "colors");
110 QColor color = config.readEntry("plot", QColor("green"));
111 m_plot_object->setBarBrush(QBrush(color, Qt::SolidPattern));
112 m_plot->update();
113 }

We get the “color” group from the configuration object for the application
again and then call readEntry to read the value we wrote before. The second
parameter QColor("green") is the default value which is used when no value
can be found in the configuration file.

We can now start the application, click the “golden” button to change the color
of the plot to gold, and the next time we start the application the plot is rendered
golden at once.

That’s all we need. We have made the color of the future configurable and made
it golden.

brightfuture3/src/main.cpp

42 CHAPTER 7. CREATING A NEW APPLICATION

Figure 7.5: Golden future

Chapter 8

Detect and Handle System
Idling

KIdleTime is a helper framework to get reporting information on idle time of
the system. It is useful not only for finding out about the current idle time of
the system, but also for getting notified upon idle time events, such as custom
timeouts or user activity. It features:

• current idling time
• timeout notifications, to be emitted if the system idled for a specified time
• activity notifications, if the user resumes acting after an idling periode

8.1 Using It

For understanding how to use KIdleTime, we create a small testing application,
called KIdleTest. This application initially waits for the first user action and
afterwards registers some timeout intervals, and acts whenever the system idles
for such a time. The KIdleTime framework provides a singleton KIdleTime,
which provides us with all necessary signals and information about the idling
status of the system. For our example, we start with connecting to the signals for
user resuming from idling and for reaching timeouts that we will set ourselves:

26 KIdleTest::KIdleTest()
27 {
28 // connect to idle events
29 connect(KIdleTime::instance(), SIGNAL(resumingFromIdle()),
30 this, SLOT(resumeEvent()));
31 connect(KIdleTime::instance(), SIGNAL(timeoutReached(int,int)),

43

44 CHAPTER 8. DETECT AND HANDLE SYSTEM IDLING

32 this, SLOT(timeoutReached(int,int)));
33

34 // register to get informed for the very next user event
35 KIdleTime::instance()->catchNextResumeEvent();
36

37 printf("Your idle time is %d\n", KIdleTime::instance()->idleTime());
38 printf("Welcome!! Move your mouse or do something to start...\n");
39 }

We also tell KIdleTime to notify us the very next time when the user acts. Note
that this is actually only for the next time. If we were interested in further
events, we had to invoke catchNextResumeEvent() again. Next, in our event
listener for the user resume event, we add register a couple of idle intervals:

47 void KIdleTest::resumeEvent()
48 {
49 KIdleTime::instance()->removeAllIdleTimeouts();
50

51 printf("Great! Now stay idle for 5 seconds to get a nice message. From 10"
52 "seconds on, you can move your mouse to get back here.\n");
53 printf("If you will stay idle for too long, I will simulate your activity"
54 "after 25 seconds, and make everything start back\n");
55

56 KIdleTime::instance()->addIdleTimeout(5000);
57 KIdleTime::instance()->addIdleTimeout(10000);
58 KIdleTime::instance()->addIdleTimeout(25000);
59 }

If any of these idle intervals is reached, our initially registered timeoutReached(...)
slot is invoked and we print out an appropriate message.

63 void KIdleTest::timeoutReached(int id, int timeout)
64 {
65 Q_UNUSED(id)
66

67 if (timeout == 5000) {
68 printf("5 seconds passed, stay still some more...\n");
69 } else if (timeout == 10000) {
70 KIdleTime::instance()->catchNextResumeEvent();
71 printf("Cool. You can move your mouse to start over\n");
72 } else if (timeout == 25000) {
73 printf("Uff, you're annoying me. Let's start again. I'm simulating your"
74 "activity now\n");
75 KIdleTime::instance()->simulateUserActivity();
76 } else {

8.1. USING IT 45

77 qDebug() << "OUCH";
78 }
79 }

From there on, depending on the reached idle interval, we go back to one of the
former steps.

Learn more about KDE at www.kde.org

K
D

E
Fr

am
ew

so
rk

s
5

Discover a variety of frameworks and their usecases.
And because nothing can replace real code, the book
will guide you with several examples how to quickly
obtain results.

This book is mainly for C++/Qt developers, who want to
extend the Qt capabilities, using KDE Frameworks.

Regular users of the software do not need this book.
Those interested in programming might find it
interesting to understand how the complex and richly
featured software we use is created.

	Frameworks 5
	History

	Concurrent programming using ThreadWeaver
	HelW olorld!
	Adding ThreadWeaver to a project - an introduction to the Frameworks 5 build system
	Hello World! with queueing multiple jobs
	Doing things in a Sequence
	Working title: Everything in moderation (and decorated)

	KArchive
	Show me the code
	Advanced usecases
	Sending compressed data over networks

	KItemModels
	Abstract
	KBreadcrumbSelectionModel
	KCheckableProxyModel
	KDescendantsProxyModel
	KLinkItemSelectionModel
	KModelIndexProxyMapper
	KRecursiveFilterProxyModel
	KSelectionProxyModel

	Spellchecking made easy
	Spellchecking in your QTextEdit
	Language Detection in Sonnet
	GUI Widgets provided by Sonnet

	Reaching a wider audience
	Writing Messages
	General Messages
	Specialized Messages
	Placeholder Substitution

	Creating a new application
	Starting a new application from a template
	Walking through the skeleton
	main.cpp
	BrightFuture

	Plotting the future
	Configuring the color
	Enabling KConfig
	Adding the capability to plot in different colors
	Writing the configuration
	Reading the configuration

	Detect and Handle System Idling
	Using It

